Metric Based Automatic Event Segmentation and Network Properties of Experience Graphs

نویسنده

  • Yuwen Zhuang
چکیده

Lifelogging, as a growing interest, is a term referring to people digitally capturing all the information produced by them in daily life. Lifelog is a data collection of records of an individual’s daily activities in one or more media forms. In this thesis, we collect lifelog data by using a mobile phone or a Microsoft Research SenseCam worn around subjects’ necks during their daily life. We then propose a way to organize the lifelog data a metricbased model for event segmentation. Further more, we analyse the data properties through constructing the experience graphs from the recorded images. This thesis involves two parts, the details are as follows: First we describe a metric-based model for event segmentation of sensor data recorded by a mobile phone worn around subjects’ necks during their daily life. More specifically, we aim at detecting human daily event boundaries by analysing the recorded triaxial accelerometer signals and images sequence (lifelog data). In the experiments, different signal representations and three boundary detection models are evaluated on a corpus of 2 subjects over total 24 days. The contribution of this work is three-fold. First, we find that using accelerometer signals can provide much more reliable and significantly better performance than using image signals with MPEG-7 low level features. Second, the models using the accelerometer data based on the world’s coordinates system can provide equally or even much better performance than using the accelerometer data based on the device’s

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images

The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...

متن کامل

Neural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images

Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation ...

متن کامل

Object-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images

As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...

متن کامل

A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI

Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...

متن کامل

Automatic segmentation of glioma tumors from BraTS 2018 challenge dataset using a 2D U-Net network

Background: Glioma is the most common primary brain tumor, and early detection of tumors is important in the treatment planning for the patient. The precise segmentation of the tumor and intratumoral areas on the MRI by a radiologist is the first step in the diagnosis, which, in addition to the consuming time, can also receive different diagnoses from different physicians. The aim of this study...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012